МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Омский государственный университет им. Ф.М. Достоевского»

Физический факультет

«	» октября 2020 г.
	Т. Б. Смирнова
Про	ректор по учебной работе,
«Ут	верждаю»

Программа вступительного испытания «Прикладные математика и физика»

Программа вступительного испытания к образовательной программе «Прикладные математика и физика» подготовки магистров разработана профессором, доктором физико-математических наук Прудниковым В.В.

Программа разработана в соответствии с Федеральным государственным образовательным стандартом высшего образования РФ по направлению «Прикладные математика и физика».

Декан физического факультета, доцент, к.б.н.

М.Г. Потуданская

Регламент проведения вступительного испытания

- 1. Вступительное испытание проводится в виде теста (с открытыми и/или закрытыми ответами).
- 2. Каждому абитуриенту будет предложено 20 вопросов. Каждый вопрос оценивается в 5 баллов.

Критерий оценки за каждый вопрос: ответ правильный -5 баллов; ответ неправильный -0 баллов.

В вопросах теста предполагается наличие только одного правильного ответа.

- 3. Максимальная оценка составляет 100 баллов.
- 4. Время на проведение вступительного испытания 90 минут.
- 5. Запрещается использовать справочные материалы, средства связи и электронно-вычислительную технику (кроме той, которая используется для сдачи вступительного испытания на основе дистанционных технологий).
 - 6. Пример тестового задания:

Вопрос с закрытым ответом:

Чему равно значение суммарного спина системы двух электронов

a)
$$S=-1/2$$
 u $1/2$ 6) $S=0$ u 1 e) $S=1/2$

Вопрос с открытым ответом:

Записать через запятую полный набор квантовых чисел, определяющий состояние атома водорода

Перечень вопросов для подготовки к вступительному испытанию

«Прикладные математика и физика»

Часть 1. ПРОГРАММА ПО ФИЗИКЕ

- 1. Уравнения движения. Обобщенные координаты, принцип наименьшего действия, функция Лагранжа. Законы сохранения энергии, импульса, момента импульса.
- 2. Интегрирование уравнений движения. Одномерное движение, движение в центральном поле.
- 3. Малые колебания. Свободные и вынужденные одномерные колебания. Колебания систем со многими степенями свободы. Колебания при наличии трения.
- 4. Канонические уравнения, уравнение Гамильтона, скобки Пуассона, действие как функция координат, теорема Лиувилля, уравнение. Гамильтона—Якоби, разделение переменных.
- 5. Постоянное электромагнитное поле. Закон Кулона. Электростатическая энергия зарядов. Дипольный момент. Мультипольные моменты. Система зарядов во внешнем поле. Постоянное магнитное поле. Магнитный момент. Теорема Лармора.
- 6. Электромагнитные волны. Волновое уравнение. Плоские волны. Монохроматическая плоская волна. Поляризация электромагнитных волн.
- 7. Поле движущихся зарядов. Запаздывающие потенциалы. Потенциалы Лиенара-Вихерта. Излучение электромагнитных волн. Поле системы зарядов на далеких расстояниях. Мультипольное излучение. Интенсивность излучения.
- 8. Усреднение уравнений Максвелла по физически бесконечно малому объему и характерному промежутку времени.
- 9. Уравнения макроскопической электродинамики. Материальные уравнения.
- 10. Комплексная диэлектрическая проницаемость. Физический смысл мнимой части диэлектрической проницаемости. Формулы Крамерса-Кронига.
- 11. Основные положения квантовой механики. Принцип неопределенности. Принцип суперпозиции. Операторы. Дискретный и непрерывный спектры. Гамильтониан. Стационарные состояния. Гейзенберговское представление. Соотношения неопределенности.
- 12. Уравнение Шредингера. Основные свойства уравнения Шредингера. Одномерный осциллятор. Плотность потока.
- 13. Одномерное движение. Квазиклассическая волновая функция. Прохождение через барьер.
- 14. Момент количества движения. Собственные функции и собственные значения момента количества движения. Четность. Сложение моментов.
- 15. Движение в центральном поле. Радиальное уравнение Шредингера. Атом водорода.
- 16. Теория возмущений. Возмущения, не зависящие от времени. Нестационарная теория возмушения.
- 17. Спин. Оператор спина. Тонкая структура атомных уровней.
- 18. Тождественность частиц. Симметрия при перестановке частиц. Обменное взаимодействие.
- 19. Основные принципы статистики. Функция распределения и матрица плотности. Теорема Лиувилля. Роль энергии. Закон возрастания энтропии. Микроканоническое распределение. Распределение Гиббса. Распределение Гиббса с переменным числом частиц.
- 20. Термодинамические величины. Температура. Работа и количество тепла. Термодинамические потенциалы. Термодинамические неравенства. Системы с переменным числом частиц. Свободная энергия в распределении Гиббса. Вывод термодинамических соотношений.
- 21. Термодинамика идеальных газов. Распределение Больцмана. Закон равнораспределения. Многоатомный идеальный газ.

- 22. Распределение Ферми и Бозе. Вырожденный идеальный ферми-газ. Вырожденный бозегаз. Конденсация Бозе-Эйнштейна. Равновесное тепловое излучение. Формула Планка. Излучение абсолютно черного тела.
- 23. Равновесие фаз. Формула Клапейрона-Клаузиса. Критическая точка. Системы с различными частицами. Правило фаз Гиббса.
- 24. Фазовые переходы второго рода. Теория Ландау. Критические индексы. Флуктуации в окрестности критической точки. Многообразие фазовых переходов второго рода и универсальность критического поведения систем.
- 25. Фононы в ковалентных и молекулярных кристаллах. Фононы в ионных кристаллах:
- 26. Электроны в периодическом поле. Одноэлектронные состояния. Приближение эффективной массы. Вычисление эффективной массы электрона. Приближенные методы вычисления одноэлектронных состояний: а) приближение почти свободных электронов, б) приближение сильной связи. Вторичное квантование системы электронов. Типы твердых тел. Зонная картина.
- 27. Классификация магнитных материалов. Физические свойства магнитных материалов. Обменная теория магнетизма. Модель Гейзенберга, ХУ-модель, модель Изинга. Спиновые волны в ферромагнетиках. Магноны. Закон дисперсии магнонов в ферромагнетиках. Спиновые волны в антиферромагнетиках. Закон дисперсии магнонов в антиферромагнетиках.
- 28. Типы дефектов структуры. Влияние точечных дефектов структуры кристалла на зонную картину электронного спектра. Влияние точечных дефектов структуры на спектр колебаний решетки. Влияние поверхности на электронный энергетический спектр. Электронные поверхностные состояния.

Часть 2. ПРОГРАММА ПО МАТЕМАТИКЕ

- 1. Простейшая задача вариационного исчисления. Уравнение Эйлера. Задача с подвижными концами.
- 2. Экстремум функции многих переменных. Условный экстремум. Метод множителей Лагранжа.
- 3. Вероятностное пространство. Независимые события. Теорема сложения. Условная вероятность. Полная система событий. Форма полной вероятности. Формула Байеса.
- 4. Случайная величина и ее функция распределения. Совместное распределение случайных величин.
- 5. Математическое ожидание и дисперсия случайной величины, их свойства.
- 6. Дифференцируемость функций комплексного переменного. Условия Коши-Римана. Гармонические функции. Восстановление комплексной функции по ее действительной или мнимой части.
- 7. Интеграл от функции комплексного переменного по контуру. Теорема Коши. Интегральные формулы Коши. Теорема о среднем.
- 8. Комплексные степенные ряды. Область сходимости комплексного степенного ряда. Дифференцирование и интегрирование комплексного степенного ряда. Ряды Тейлора комплексных функций.
- 9. Ряд Лорана. Область сходимости ряда Лорана. Теорема Лорана.
- 10. Классификация особых точек регулярной функции. Поведение ряда Лорана в окрестности особой точки.
- 11. Теория вычетов. Основная теорема теории вычетов и ее обобщения. Вычисление определенных интегралов с помощью теории вычетов.
- 12. Классификация линейных дифференциальных уравнений второго порядка от двух переменных. Приведение линейных дифференциальных уравнений второго порядка от двух переменных к каноническому виду. Уравнения с постоянными коэффициентами.
- 13. Одномерное волновое уравнение. Задача Коши для одномерного волнового уравнения. Формула Даламбера. Метод решения неоднородного волнового уравнения.

- 14. Трехмерное волновое уравнение. Задача Коши для трехмерного волнового уравнения. Формула Пуассона. Метод решения неоднородного волнового уравнения.
- 15. Метод Фурье (метод разделения переменных). Собственные функции и собственные значения. Решение методом Фурье волнового уравнения на отрезке. Решение методом Фурье неоднородного волнового уравнения.
- 16. Одномерное уравнение теплопроводности. Решение методом Фурье одномерного уравнения теплопроводности на отрезке. Решение методом Фурье неоднородного уравнения теплопроводности.
- 17. Задача Коши на прямой для одномерного уравнения теплопроводности. Функция Грина. Задача Коши для трехмерного уравнения теплопроводности (однородный и неоднородный случай).
- 18. Метод Фурье решения краевых задач для уравнения Лапласа. Задача Дирихле для круга. Интеграл Пуассона.
- 19. Роль численных методов в физике. Метод Монте-Карло и метод молекулярной динамики (общая характеристика). Граничные условия.
- 20. Генераторы случайных чисел. Равномерное и неравномерное распределение случайного числа. Алгоритмы получения заданного распределения. Алгоритм Метрополиса получения заданного распределения.
- 21. Метод Монте-Карло для канонического ансамбля.
- 22. Метод Монте-Карло для микроканонического ансамбля.
- 23. Метод Монте-Карло для большого канонического ансамбля.
- 24. Метод молекулярной динамики.(МД) Численное интегрирование уравнений движения. Выбор временного шага. Консервативные свойства алгоритмов. Усреднение по траектории.
- 25. Молекулярная динамика микроканонического ансамбля.
- 26. Молекулярная динамика канонического ансамбля.
- 27. Численное решение параболических уравнений. Асимптотическая устойчивость неявной схемы. Явные схемы. Многомерное уравнение.
- 28. Численное решение эллиптических уравнений. Счет на установление. Вариационные и вариационно-разностные методы. Прямые методы решения. Итерационные методы.
- 29. Численное решение гиперболических уравнений. Волновое уравнение. Схема «крест». Неявная схема. Явная многомерная схема. Факторизованные схемы.
- 30. Методы Монте-Карло решения уравнений математической физики.

Список рекомендуемой литературы для подготовки к вступительному испытанию.

- 1. Ландау Л.Д., Лифшиц Е.М. Механика. М.: Физматлит, 2001.
- 2. Ландау Л.Д., Лифшиц Е.М. Теория поля. М.: Наука, 1988.
- 3. Давыдов А. С. Квантовая механика. М.: Наука, 1973.
- 4. Ландау Л.Д., Лифшиц Е.М. Квантовая механика. Нерелятивистская теория. М.: Физматлит, 2001.
- 5. Ландау Л.Д., Лифшиц Е.М. Статистическая физика. Ч.1. М.: Физматлит, 2001.
- 6. Румер Ю.Б., Рывкин С.М. Термодинамика, статистическая физика и кинетика. М.: Наука, 1971.
- 7. Квасников И.А. Термодинамика и статистическая физика. Теория равновесных систем. М.: Изд-во МГУ, 1991.
- 8. Квасников И.А. Термодинамика и статистическая физика. Теория неравновесных систем. М.: Изд-во МГУ, 1987.
- 9. Лифшиц Е.М., Питаевский Л.П. Статистическая физика. Ч.2. М.: Наука, 2000.
- 10. Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. М.: Наука, 1979.
- 11. Давыдов А.С. Теория твердого тела.(1976).
- 12. Ч. Киттель. Введение в физику твердого тела. М.: Наука, 1978.
- 13. Владимиров В.С. Уравнения математической физики. М.: Наука, 1981.
- 14. Гнеденко Б.В. Курс теории вероятностей. М.: Наука, 1988.
- 15. Кудрявцев Л.Д. Курс математического анализа. М.: Высшая школа, 1988, т.1-3
- 16. Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1988.
- 17. Сидоров Ю.В., Федорюк М.В., Шабунин М.И. Лекции по теории функций комплексного переменного. М.: Наука, 1989.
- 18. Тихонов А.Н., Самарский А.А. Уравнения математической физики. М.: Наука, 1977.
- 19. Эльсгольц Л.Э. Дифференциальные уравнения и вариационное исчисление. М: Наука, 1965.
- 20. Прудников В.В., Вакилов А.Н., Прудников П.В. Фазовые переходы и методы их компьютерного моделирования. Омск, ОмГУ, 2007.
- 21. Гулд Х., Тобочник Я., Компьютерное моделирование в физике: в 2 частях. М. Мир, 1992.
- 22. Турчак Л.И., Плотников П.В. Основы численных методов. М.: Физматлит, 2003.
- 23. Бахвалов Н.С. Численные методы. М.: Наука, 1975.
- 24. Калиткин Н.Н. Численные методы. М.: Наука, 1978.